Structural and Functional Determinants of Conserved Lipid Interaction Domains of Inward Rectifying Kir6.2 Channels
نویسندگان
چکیده
All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.
منابع مشابه
Mapping of the physical interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2.
The amino-terminal and carboxyl-terminal domains of inwardly rectifying potassium (Kir) channel subunits are both intracellular. There is increasing evidence that both of these domains are required for the regulation of Kir channels by agents such as G-proteins and nucleotides. Kir6.2 is the pore-forming subunit of the ATP-sensitive K(+) (K(ATP)) channel. Using an in vitro protein-protein inter...
متن کاملMultiple sites of interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2.
The amino-terminal and carboxy-terminal domains of inwardly rectifying potassium channel (Kir) subunits are both intracellular. A direct physical interaction between these two domains is involved in the response of Kir channels to regulatory factors such as G-proteins, nucleotides and intracellular pH. We have previously mapped the region within the N-terminal domain of Kir6.2 that interacts wi...
متن کاملMolecular dynamics simulations of inwardly rectifying (Kir) potassium channels: a comparative study.
Inward rectifier potassium (Kir) channels regulate cell excitability and transport K+ ions across membranes. Homotetrameric models of three mammalian Kir channels (Kir1.1, Kir3.1, and Kir6.2) have been generated, using the KirBac3.1 transmembrane and rat Kir3.1 intracellular domain structures as templates. All three models have been explored by 10 ns molecular dynamics simulations in phospholip...
متن کاملParadoxical activation of an inwardly rectifying potassium channel mutant by spermine: "(b)locking" open the bundle crossing gate.
Intracellular polyamines are endogenous blockers of inwardly rectifying potassium (Kir) channels and underlie steeply voltage-dependent rectification. Kir channels with strong polyamine sensitivity typically carry a negatively charged side chain at a conserved inner cavity position, although acidic residues at any pore-lining position in the inner cavity are sufficient to confer polyamine block...
متن کاملControl of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel
Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 119 شماره
صفحات -
تاریخ انتشار 2002